
D E L E C A 2 P A R T A :

G A N
By:

Loh Kong Xuan K ieran
(p23090 53) &

Soon J ing Yi (p23089 40)

O V E R V I E W

Background Research

EDA

Feature Engineering

Data Augmentation

Model Building

Model Improvement

Final Model Evaluation

Conclusion

W H A T A R E G A N S ?
Generative Adversarial Networks (GANs) were introduced by Ian Goodfellow and other researchers in 2014. GANs consist of 2 neu ral
networks, a generator and a discriminator, which contest with each other in a zero -sum game.

The generator creates the images from noise, while the discriminator evaluates it, aiming to distinguish between real and gen erated
data. This adversarial process helps the generator improve its output to fool the discriminator, leading to the creation of h ighly
realistic data.

D A T A S E T
The dataset given in this assignment is the EMNIST letters dataset, which is a subset of the Extended MNIST (EMNIST) dataset developed in
2017, which extends the original MNIST dataset to include more handwritten characters. It contains handwritten character digits converted
to a 28x28 pixel image format that matches the structure of the MNIST dataset. The original EMNIST Letters dataset contained EMNIST
145,600 characters and 26 balanced classes.

B A C K G R O U N D R E S E A R C H

A P P L I C A T I O N S O F I M A G E G E N E R A T I O N
• Art and design
• Pre-visualization in film industry
• Data augmentation, augment training datasets for AI/ML models, improving their performance by providing more

diverse and representative sample.
• Style transfer
• Image generation

E D A

A sample of the dataset images:

E D A

F E A T U R E E N G I N E E R I N G
Standard Preprocessing:

• Remove Outliers (images whose pixel values significantly deviate from the mean pixel values of their
class. These outliers can skew the results and obscure meaningful patterns in the data)

• Fixing orientation of the images (rotate the images 90 degrees clockwise and flip horizontally)

Further Preprocessing:

• Denoising the images (removing unwanted noise from the images)

• Sharpening the images (enhance the edges and details within an image, making the features more
distinct)

Augmentation:

• Augment the images further by width and height shifting, shearing and filling.

• Enhanced model generalization

• Increased data variability

• Improved model robustness

• Reduce overfitting

• Potential negative impacts

• Loss of original image quality

• Increased computational load

• Risk of over augmentation

• Potential decrease in GAN performance

M O D E L B U I L D I N G
1 . D C G A N

2 . C G A N

3 . W G A N

M O D E L B U I L D I N G (M E T R I C E S)
Explanation of metrices used in training
- Discriminator Loss measures how well the discriminator can distinguish between real and fake images, correctly

classify real samples as real and fake samples (produced by the generator) as fake
- Generator Loss measures how well the generator is at producing images that can fool the discriminator, produce

samples that the discriminator incorrectly classifies as real
- Discriminator Accuracy is the percentage of correctly classified images by the discriminator.
- KL Divergence quantifies the difference between two probability distributions, in this case between the

distributions of real and generated images
- JS Divergence is a symmetric measure that also evaluates the difference between these distributions. KL

Divergence is useful for understanding how one distribution diverges from another, JS Divergence provides a
more balanced view of the divergence between two distributions.

How should the values of the metrices look like for an optimal training?
- Discriminator Loss the graph should stabilize at a low value over time. If the discriminator loss is too low or too

high, it may indicate an imbalance where the discriminator is either too powerful or too weak relative to the
generator.

- An optimal scenario is where both discriminator and generator losses stabilize and neither the generator nor the
discriminator dominates the training process. This balance indicates that the GAN is learning effectively.

- Discriminator accuracy should ideally hover around 50%. This indicates that the discriminator is finding it equally
challenging to distinguish between real and fake images, suggesting that the generator is producing high-quality
images.

- During optimal training, KL and JS divergence should decrease and stabilize, indicating that the distribution of
generated images is becoming similar to the distribution of real images.

M O D E L B U I L D I N G (D C G A N)

DCGANs consist of two main components:
Generator
• Input: Takes a random noise vector (latent space) as input.
• Layers: Composed of transposed convolutional layers (also known as

deconvolutional layers), which aims to upsample the input noise, resulting in a
larger output feature map which would eventually be the generated image.
(https://www.linkedin.com/pulse/one-minute-overview-deep-convolutional-
generative-networks-dobilas/)

• Output: Produces an image that mimics the training data, passed through a
Tanh activation function to map the output to the range [-1, 1]. This matches
the range of the pixel values of the input images, which are also normalized to
[−1,1]. This ensures consistency between the generated and real images.

Discriminator
• Input: Takes an image (either real or generated) as input.
• Layers: Consists of strided convolutional layers to downsample the images
• Output: Outputs a probability through a Sigmoid activation function and

through cross entropy, outputting a binary classification of whether the input
image is real or fake.

https://www.linkedin.com/pulse/one-minute-overview-deep-convolutional-generative-networks-dobilas/

https://www.linkedin.com/pulse/one-minute-overview-deep-convolutional-generative-networks-dobilas/
https://www.linkedin.com/pulse/one-minute-overview-deep-convolutional-generative-networks-dobilas/
https://www.linkedin.com/pulse/one-minute-overview-deep-convolutional-generative-networks-dobilas/

M O D E L B U I L D I N G (D C G A N)

We trained the base DCGAN on the 3 different datasets separately to evaluate whether augmentations are beneficial.
• Overall, the model fitted with the original images has the most stable training based on the loss curve and discriminator

accuracy, which converged and stabilized the quickest with the least fluctuations.
• The model fitted with the augmented images is the least stable, as seen by the fluctuations and slow convergence in both

the loss discriminator accuracy graphs. The KL and JS divergences also decreases, but it fluctuates wildly in some instances as
well.

• Training on the augmented images introduces challenges due to distortions like height, width, shearing, and filling, making it
harder for the DCGAN to learn effectively. This results in less stable training, poorer performance, and more difficulty for the
generator and discriminator to adapt, leading to higher losses, fluctuating accuracies, and inconsistent divergences compared
to training on original images.

M O D E L B U I L D I N G (D C G A N)

Generated Images by the DCGANs at 2000 Epoch

trained on original images trained on sharpened images trained on augmented images

Trained on original images
• The generated characters are smoother and more closely resemble natural handwriting. Most of the characters are easily

recognizable.
Trained on sharpened images
• The generated characters are the sharpest, with a clear distinction between white and black pixels. However, they appear less

natural and more “computer generated”. Most characters are also recognizable.
Trained on augmented images
• The generated characters are messy and unrecognizable, with more noise compared to the other two sets. The additional

variability from augmentation made it more difficult for the DCGAN to learn consistent features.
Overall, we chose to use models trained on original images dataset from this point onwards, as it provided the most stable and
efficient training, and the images generated more closely resemble natural handwriting.

M O D E L B U I L D I N G (C G A N)

The overall concept of CGAN is similar to DCGAN in terms of architecture,
compilation and training, however, for CGAN, labels are inputted to both the
generator and discriminator.
- The generator receives a latent noise vector and a class label as inputs. The

class label is embedded into a dense vector and then multiplied element-
wise with the latent noise vector. This combined vector is used to generate
images that corresponds to the specified class label.

- On the other hand, the discriminator uses the class labels to improve its ability
to distinguish between real and generated images of the specific class. The
label is embedded and then multiplied element-wise with the input image. By
knowing the class information, the discriminator can better evaluate
whether an image belongs to the correct class or not. This makes the
discriminator more efficient at identifying fake images, as it has additional
context, and encourages the generator to improve on generating class
specific features.

- Other than the ability to generate images of a specific class, CGANs have other
benefits compared to DCGANs such as improved performance in generating
higher quality outputs since the additional conditional information (label)
helps guide the generator more effectively, resulting in more consistent and
coherent images (https://www.linkedin.com/pulse/conditional-generative-
adversarial-network-cgan-madhavan-vivekanandan-nae7c/)

https://datascientest.com/en/what-is-a-conditional-generative-adversarial-network-cgan

https://www.linkedin.com/pulse/conditional-generative-adversarial-network-cgan-madhavan-vivekanandan-nae7c/
https://www.linkedin.com/pulse/conditional-generative-adversarial-network-cgan-madhavan-vivekanandan-nae7c/
https://datascientest.com/en/what-is-a-conditional-generative-adversarial-network-cgan

M O D E L B U I L D I N G (C G A N)

During training, the generator initially exhibited higher loss
compared to the discriminator, with fluctuations in both
losses. This trend indicated that the generator was struggling
more than the discriminator. Over time, both losses stabilized
and converged, reflecting a balance between the generator
and discriminator, signifying successful training.

Discriminator accuracy showed an initial fluctuation but
reached equilibrium at around 0.5 after a period of
imbalance. This pattern suggests that the CGAN eventually
achieved a balanced state where both the generator and
discriminator performed equally.

The KL divergence decreased and stabilized, indicating that
the generated images increasingly resembled the real data
distribution. Similarly, the JS divergence dropped to near zero,
further suggesting that the generator effectively learned to
produce images that are close to the real ones.

M O D E L B U I L D I N G (C G A N)

The base CGAN was able to generate images of each
class.
- There are some recognizable characters for each letter.

- For example, generated images for P, S, V and W
are recognizable and are correctly corresponded

- The overall quality of the images are still noisy and
there are checkerboard artifacts. This might be due to
uneven overlaps in the spatial dimension during
transposed convolutions. It can also be due to
insufficient network capacity.

M O D E L B U I L D I N G (W G A N)
WGAN is an enhanced version of the traditional GAN. Unlike
conventional GANs, which use a discriminator to classify
generated images as either real or fake, WGAN replaces the
discriminator with a critic that assigns a score reflecting the
authenticity of an image.

The Wasserstein loss calculates the mean product of the truth
labels, and the score outputted by the discriminator. In the
discriminator, since the real labels are -1, to minimize the loss, it
scores real images higher. On the other hand, since fake labels
are 1, to minimize the loss, it scores fake images lower.

The generator aims to increase the discriminator’s score for
generated images, thus making them more similar to real
images.

WGAN also incorporates weight clipping in the critic's function,
which prevents extreme gradients, leading to more stable and
reliable updates during training.

Overall, it offers a more stable training process and is less
sensitive to model architecture and hyperparameter settings.

M O D E L B U I L D I N G (W G A N)

Overall, the training duration took longer than DCGAN and
CGAN at around 50 minutes in total, compared to around
10 minutes.

As compared to the DCGAN and CGAN, we can see that
the training curves are much more stable and converges
faster. We can see that in all 3 graphs, they converge and
stabilize at around 100 epochs. This means that the WGAN
has a high training efficiency and stability.

M O D E L B U I L D I N G (W G A N)

The model has managed to produce lines that somewhat mimic
handwriting, however, many of the characters remain
unrecognizable. This indicates that while the WGAN has learned
some features of handwritten characters, but further training or
model adjustments may be necessary to enhance the clarity and
accuracy of the generated characters

M O D E L I M P R OV E M E N T
- We decide to focus on CGAN as it has a better potential in

generating images compared to GANs and WGANs, due to its
ability to generated specific images, as well as the advantages of
having extra information from the labels.

- Furthermore, it takes relatively less time to train a CGAN model
as compared to WGAN in our case.

M O D E L I M P R O V E M E N T 1 (K E R N E L I N I T I A L I Z E R)

Proper kernel initialization ensures that the starting
weights of these networks are neither too large nor too
small, which helps in maintaining balanced gradients
during backpropagation. If weights are poorly initialized,
they can lead to gradients that either vanish or explode,
making the training process slow and unstable.

In this case, we used the glorot_normal initializer, which
scales weights based on the layer’s size, helps maintain a
consistent variance of activations and gradients across
layers.

This balance promotes smoother and faster learning,
leading to better performance of the GAN in generating
high-quality images.

M O D E L I M P R O V E M E N T 1 (K E R N E L I N I T I A L I Z E R)

The overall graphs are still somewhat unstable, with some
fluctuations. Looking at the losses and discriminator accuracy,
the model converged at around 1500 epochs.

During the training, the model reached a minimum Kl and JS
divergence of 6.2 and 0.027 respectively.

M O D E L I M P R O V E M E N T 1 (K E R N E L I N I T I A L I Z E R)
To evaluate the quality of images produced, we introduced
Fréchet Inception Distance (FID), which measures how similar
the features of generated images are to the features of real
images, using the Inception V3 network. Lower scores suggests
two groups of images are more similar, or have more similar
statistics, with a perfect score being 0 indicating that the two
groups of images are identical.

Evaluating “by-eye”, the generated images are still noisy, with
only some classes like 'S' and 'O' being recognizable. Additionally,
there is less variability within certain classes, such as 'O', where
all 10 images are quite similar, suggesting possible mode
collapse.

Using FID, comparing with a total of 1000 real and 1000 fake
images, an FID score of 5.48 was obtained. We will be using this
score to compare with the improved models later on.

M O D E L I M P R O V E M E N T 2

(I N C R E A S E C O M P L E X I T Y)
For the generator,
- the number of neurons in the dense and number of filters

in the Cov2dTranspose layers are increased by 4 times.
- This added capacity enables the generator to produce

more detailed, higher-quality images by better capturing
the data distribution's complexity and reducing
blurriness in the generated images.

For the discriminator,
- the number of filters in the Conv2D layers are increased

by 8 times. There is also an additional two dense layers at
the end with 128 and 32 neurons, respectively.

- Increasing the number of filters in the Conv2D layers
improves the discriminator's ability to detect finer details
and complex features in both real and generated images.
This enhances the discriminator's ability to distinguish
between real and fake images.

- Adding extra Dense layers with more neurons refines this
classification further, increasing the performance of the
discriminator and driving the generator to produce
higher-quality images.

M O D E L I M P R O V E M E N T 2

(I N C R E A S E C O M P L E X I T Y)

Overall, the graphs are more stable compared to the
previous model. Additionally, the losses and
discriminator accuracy show that the model
converged faster, around 1,000 epochs.

The minimum KL and JS divergence values were also
lower, reaching 5.5 and 0.026, respectively. This
indicates that the generated results are more closely
aligned with the distribution of the real images.

M O D E L I M P R O V E M E N T 2

(I N C R E A S E C O M P L E X I T Y)

As compared to model 1, we can see that this
CGAN with increased complexity generated letters
that are more defined and less noisy.

The FID Score also decreased from 5.48 to 1.08,
this indicates that the model's generated images
have become significantly more similar to the real
images

M O D E L I M P R O V E M E N T 3

(B A T C H N O R M A L I Z A T I O N A N D B A T C H S I Z E)

Batch normalization can accelerate training by allowing higher
learning rates and reducing the sensitivity to parameter
initialization. This can lead to faster convergence of the GAN
model.

It also helps mitigate the internal covariate shift problem, where
the distribution of network activations changes during training. It
can have a regularizing effect on the model, which may help
prevent overfitting and improve generalization. This can make the
training process more robust and help the model generalize the
letters better.

We reduced the batchsize from 256 to 128, this is because smaller
batch sizes can sometimes lead to more stable training, especially
in the early stages of GAN training. This is because they introduce
more noise into the gradient estimates. Smaller batch sizes can
also lead to better generalization. This is because the added noise
from smaller batches can act as a form of regularization, potentially
preventing overfitting

M O D E L I M P R O V E M E N T 3

(B A T C H N O R M A L I Z A T I O N A N D B A T C H S I Z E)

We can see that the training is not as fast as
model 2, and that it took around 1200 epochs for
the losses to converge and about 2500 epochs for
the discriminator accuracy to stabilize at 0.5.

Overall, the KL and JS divergence increased
slightly to 5.9 and 0.029. This increase can be due
to the added noise caused by batch normalization.

Batch normalization may cause the network to be
more sensitive to learning rates. Hence, training
might become slower or less stable. Therefore,
we have to tune the learning rates after this.

M O D E L I M P R O V E M E N T 3

(B A T C H N O R M A L I Z A T I O N A N D B A T C H S I Z E)

The generated images is more noisy and less
defined compared to CGAN 2. The FID also
increased back up to 4.61, indicating lower quality
images generated. This can be due to the
additional noise introduced through batch
normalization.

Hence, we will be tuning the hyperparameters of
the networks, especially the learning rates

M O D E L I M P R O V E M E N T 4

(L E A R N I N G R A T E , B E T A , N O I S E D I M E N S I O N)

Increased learning rate from 0.0002 to 0.0008 for faster convergence.
A higher learning rate allows the model to make larger updates to the
weights during training, which can speed up the learning process. We
also ensured that this higher learning rate is still stable enough for the
model, by evaluating the training curves.

Increased noise dimension from 100 to 256. Increasing the noise
dimension allows the generator to capture more complex patterns and
details in the data, this provides more freedom for the generator to
create diverse and higher quality images. With a larger noise
dimension, the generator can potentially cover more modes of the data
distribution, reducing issues like mode collapse where the generator
produces limited and repetitive outputs.

Increased beta_1 from 0.5 to 0.6. beta_1 controls how much the
optimizer "remembers" previous gradients. It's used to calculate a
running average of the gradients, which helps smooth out the
optimization process. Increasing beta_1 can lead to smoother and
more stable updates by giving more weight to past gradients, which
can help in stabilizing the training process.

M O D E L I M P R O V E M E N T 4

(L E A R N I N G R A T E , B E T A , N O I S E D I M E N S I O N)

The losses and accuracy graphs is smoother, with no sudden peaks or
dips. The losses converges and stabilizes at around 2700 epochs. The
accuracy curve gradually decreases to about 0.6.

The minimum KL and JS divergence also decreased to 5.4 and 0.026
respectively.

The Smooth training curves indicate that the model is making
consistent progress throughout the training process, rather than
experiencing sudden performance drops. Furthermore, smooth training
helps mitigate the risk of mode collapse, where the generator
produces limited varieties of samples.

M O D E L I M P R O V E M E N T 4

(L E A R N I N G R A T E , B E T A , N O I S E D I M E N S I O N)

We can see that the letters are more
defined and readable, with significantly
less noise.

The FID decreased to 0.922, indicating
that the generated images are closer to
the real images compared to the
previous models

M O D E L I M P R O V E M E N T 5

(O N E S I D E D L A B E L S M O O T H I N G)

We changed the labels for real images from 1.0 to 0.9 as the target
values for the discriminator during training.

One sided label smoothing helps prevent the discriminator from
becoming too confident in its predictions for real images. By setting
the target for real images to a value slightly below 1.0, it encourages
the discriminator to be less certain, which can improve overall
training stability. By smoothing only the positive labels, it prevents
the discriminator from giving very large gradients to the generator.
This can help stabilize the training process and prevent issues like
mode collapse
(https://www.researchgate.net/publication/380084231_Application_
of_Smoothing_Labels_to_Alleviate_Overconfident_of_the_GAN's_Di
scriminator)

Furthermore, unlike two-sided label smoothing, one-sided
smoothing maintains the incentive for fake samples to move
towards the real data distribution, as it doesn't modify the labels for
fake samples

https://www.researchgate.net/publication/380084231_Application_of_Smoothing_Labels_to_Alleviate_Overconfident_of_the_GAN's_Discriminator
https://www.researchgate.net/publication/380084231_Application_of_Smoothing_Labels_to_Alleviate_Overconfident_of_the_GAN's_Discriminator
https://www.researchgate.net/publication/380084231_Application_of_Smoothing_Labels_to_Alleviate_Overconfident_of_the_GAN's_Discriminator

M O D E L I M P R O V E M E N T 5

(O N E S I D E D L A B E L S M O O T H I N G)

Comparing the training graph to the previous 4 models,
we can see that the discriminator accuracy curve is
smoother and more stable, hovering at around 0.5
throughout, instead of spiking or fluctuating.
The discriminator and generator loss is also smoother,
we less fluctuations and converges to a stable point

We increased the number of epochs for the model to
train since the convergence took slightly longer than
the previous models mainly due to the slower learning
rate introduced in model 4. By increasing the number
of epochs, we can also ensure that the model learns
the distribution of each class accurately, furthermore,
in this case, there was no overfitting occurring due to
the help of one-sided label smoothing.

The minimum KL and JS was maintained at around 5.5
and 0.026.

B ES T M O D E L E VA LUAT I O N

B E S T M O D E L E V A L U A T I O N

Most images produces are sharp and defined, with a few exceptions. We
can see that the model has learnt to produce different styles of the same
class. For example, it has learnt to produce lower and uppercase version of
'a'. This variation suggests that the generator has effectively learned the
nuances and variations within each class, generating diverse outputs.
However, can see that 'z' was the hardest class to generate, with the
images almost being blank.

With the lowest FID score of 0.768, the generated images are the best
(closest to the real images) and improved by about 4.72 FID from the first
CGAN model.

Class ‘Z’ is the hardest to generate and has generated images that differs the most from the real images based on the
significantly higher FID score of close to 10 compared to the rest of the classes. This might be due to the images of 'z'
having significantly more diverse variations of handwritings. There also might be problems with the label embeddings
for the class 'z'. There could be a possibility that the embedding for 'z' is misaligned or does not effectively map to the
corresponding generator layers, since it was the last class. This misalignment can result in the generator failing to learn
and generate the specific features of the letter 'z’.

Classes ‘V’ and ‘O’ are the easiest to generate. Class 'V' has the lowest FID followed by 'O', at around 1.0. These classes
might have a low FID score as these letters are relatively consistent in the handwriting images, with its uppercases and
lowercases being the same. The reduced variability in the shapes of 'V' and 'O' compared to other characters may
contribute to more consistent and accurate generation.

B E S T M O D E L E V A L U A T I O N
W H I C H C L A S S E S A R E E A S I E R / H A R D E R T O G E N E R A T E ?

C O N C L U S I O N

In summary, three different variations of GANs were built (DCGAN, CGAN, WGAN). We proposed a way of generating images of a
specific class using label embeddings in CGAN, which we focused on for model improvement. Several metrices were also used to
evaluate the quality of images apart from a simple “by-eye” method, we used KL and JS divergences, as well as FID. During the
improvement, we managed to decrease the FID score of the generated images from 5.48 to 0.768.

If we were asked to generate coloured images instead of black and white ones, we think that it is harder to produce better quality
results in terms of model building and training.
• This is because coloured images have 3 channels compared to 1 in grayscale images. This means that apart from the spatial

dimensions, there is an added “colour dimension” that the model has the learn and capture. This would increase the input size
and complexity of the data that the GAN has to learn.

• With this added dimension, there are also higher variability and hence, more training data is required to capture the diversity
of the colours. The generator also needs to maintain color consistency across the image, which can be challenging, especially
for complex scenes or objects as it may produce color artifacts or unrealistic color combinations that are more noticeable
than artifacts in grayscale images.

• It can also be harder to evaluate the quality of the generated coloured images since the metrices would have to consider both
structural and colour fidelity.

• Overall, the model’s complexity might have to be increased, and training time might take longer. Hence, it would be harder to
produce better quality results for coloured images.

Additionally, other experiments could include using instance normalization and separating upsampling from convolution by
applying techniques such as nearest-neighbor interpolation to reduce checkerboard artifacts (https://distill.pub/2016/deconv-
checkerboard/). Other GAN architectures, such as ACGAN, involve a discriminator that only takes the image as input and outputs
both the probability that the image is real and a prediction of the image's class label (https://www.researchgate.net/figure/GAN-
conditional-GAN-CGAN-and-auxiliary-classifier-GAN-ACGAN-architectures-where-x_fig1_330474693). Exploring these architectures
may lead to further improvements in generating the EMNIST letters.

https://distill.pub/2016/deconv-checkerboard/
https://distill.pub/2016/deconv-checkerboard/
https://www.researchgate.net/figure/GAN-conditional-GAN-CGAN-and-auxiliary-classifier-GAN-ACGAN-architectures-where-x_fig1_330474693
https://www.researchgate.net/figure/GAN-conditional-GAN-CGAN-and-auxiliary-classifier-GAN-ACGAN-architectures-where-x_fig1_330474693

	Slide 1: DELE CA2 Part A: GAN
	Slide 2: Overview
	Slide 3: What are GANs?
	Slide 4: EDA
	Slide 5: EDA
	Slide 6: Feature engineering
	Slide 7: Model building
	Slide 8: Model building (metrices)
	Slide 9: Model building (DCGAN)
	Slide 10: Model building (DCGAN)
	Slide 11: Model building (DCGAN)
	Slide 12: Model building (CGAN)
	Slide 13: Model building (CGAN)
	Slide 14: Model building (CGAN)
	Slide 15: Model building (WGAN)
	Slide 16: Model building (WGAN)
	Slide 17: Model building (WGAN)
	Slide 18: Model improvement
	Slide 19: Model improvement 1(kernel initializer)
	Slide 20: Model improvement 1(kernel initializer)
	Slide 21: Model improvement 1(kernel initializer)
	Slide 22: Model improvement 2 (increase complexity)
	Slide 23: Model improvement 2 (increase complexity)
	Slide 24: Model improvement 2 (increase complexity)
	Slide 25: Model improvement 3 (batch normalization and batchsize)
	Slide 26: Model improvement 3 (batch normalization and batchsize)
	Slide 27: Model improvement 3 (batch normalization and batchsize)
	Slide 28: Model improvement 4 (learning rate, beta, noise dimension)
	Slide 29: Model improvement 4 (learning rate, beta, noise dimension)
	Slide 30: Model improvement 4 (learning rate, beta, noise dimension)
	Slide 31: Model improvement 5 (one sided label smoothing)
	Slide 32: Model improvement 5 (one sided label smoothing)
	Slide 33: Best model evaluation
	Slide 34: Best model evaluation
	Slide 35
	Slide 36: conclusion

