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Abstract 

This paper investigates the application of Cycle-Consistent Adversarial Networks (CycleGAN) [17] 
for enhancing smartphone photography, focusing on translating images between iPhone and Digital 

Single-Lens Reflex (DSLR) cameras. The research explores the effectiveness of CycleGAN in 
improving smartphone photographs to resemble DSLR quality without requiring paired training data. 

A CycleGAN model was developed using TensorFlow and Keras, utilizing ResNet-based generators 
and PatchGAN discriminators architectures [17], and trained on the iPhone2DSLR_flower dataset 

[2]. The study presents both qualitative and quantitative evaluations, demonstrating the effectiveness 

of CycleGAN in translating images with limited computational resource. 

 

1. Introduction 

Over the years, computational photography has advanced significantly, particularly in the context of 

smartphone cameras [16]. As techniques such as High Dynamic Range (HDR) imaging, image 

stacking, and deep learning models become increasingly integrated into camera applications, modern 

smartphones are now capable of producing high quality images and videos even in notoriously 

challenging environments, such as nighttime scenes [16]. This paper evaluates whether images 

captured with smartphones, which often exhibit minimal background blur, lack of bokeh, and limited 

contrast and detail due to their small sensor sizes and compact lenses [16], can be transformed to 

resemble those taken with high-end DSLR cameras through unpaired image-to-image translation [17]. 

Unpaired image-to-image translation methods, such as CycleGAN, offer a significant advantage by 

eliminating the need for paired training data, which is often challenging and costly to obtain [17]. For 

example, obtaining exact pairs of images taken with different devices, such as DSLR and iPhone 

cameras, is difficult due to variations in framing, sensor characteristics, and image processing. 

This paper examines the CycleGAN model, focusing on its application for enhancing smartphone 

photographs using TensorFlow and Keras [10, 17]. In this study, the CycleGAN model is applied to 

the iPhone2DSLR_flower dataset. Additionally, the paper discusses the limitations of CycleGAN and 

highlights recent advancements made by other researchers in the field. 

 

2. Related works 

2.1 Generative Adversarial Networks (GANs) 

First introduced in 2014 [4], GANs continue to be highly relevant a decade later, serving as 

fundamental building blocks for generative models. The generator network aims to produce synthetic 

data that is indistinguishable from real data, while the discriminator network attempts to differentiate 

between real and generated samples [4, 15]. This adversarial training process can be formulated as a 

minimax game, where the generator tries to minimize the probability of the discriminator correctly 

classifying samples, while the discriminator tries to maximize this probability [4, 15]. 

2.2 Image-to-Image Translation 

The goal of Image-to-image translation is to learn a mapping between an input image and an output 

image [12, 13]. This field has evolved significantly over the past two decades, with approaches 
ranging from non-parametric methods to deep learning-based techniques [12, 13]. The concept of 

image-to-image translation can be traced back to Hertzmann et al.'s work on "Image Analogies" in 

2001 [7]. 

https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://efrosgans.eecs.berkeley.edu/cyclegan/datasets/
https://www.visionary.ai/blog/how-is-computational-photography-revolutionizing-smartphone-cameras
https://www.visionary.ai/blog/how-is-computational-photography-revolutionizing-smartphone-cameras
https://www.visionary.ai/blog/how-is-computational-photography-revolutionizing-smartphone-cameras
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://keras.io/examples/generative/cyclegan/
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1610.09585
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1610.09585
https://arxiv.org/abs/2101.08629
https://arxiv.org/abs/1703.00848
https://arxiv.org/abs/2101.08629
https://arxiv.org/abs/1703.00848
https://www.researchgate.net/publication/2406594_Image_Analogies


Building upon GANs, the pix2pix framework was proposed in 2017, which marked a significant 

milestone in image-to-image translation [9]. Pix2pix introduced conditional GANs for paired image-

to-image translation, providing a general-purpose solution for many image-to-image translation tasks 

[9]. The model learned both the mapping from input image to output image and an appropriate loss 

function to train this mapping [9]. 

However, the main problem of paired image-to-image translation is obtaining the dataset itself. 

Obtaining such paired data can be challenging and resource-intensive. For many tasks, the desired 

output is complex, requiring artistic or highly specific input-output pairs [17]. In the context of 

translating iPhone images to DSLR images using paired training data, it is necessary for the same 

scene or subject to be captured by both devices with as much similarity as possible. This requirement 

poses significant challenges, as it demands that the framing, surrounding environment, and 

composition be closely aligned within each image pair. Furthermore, relying only on paired data 

restricts the amount of training data that can be used, as unpaired data in either domain cannot be 

leveraged [17]. 

2.3 Unpaired Image-to-Image Translation (CycleGAN) 

To address the limitations of paired data, CycleGAN, a model for unpaired image-to-image 

translation was introduced [17]. The use of CycleGAN has been demonstrated in various domains, 

including translating photographs to artistic styles and enhancing low-quality to high-quality images. 

[17] 

CycleGAN addresses the issue of paired image-to-image translation by learning to translate between 

domains without paired input-output examples. [17]. The goal is to train a mapping G:X→Y such that 

the output ŷ = G(x) is indistinguishable from images in Y, using an adversarial network. [17] 

 

Figure 1: Visual of cycle-consistency loss [17] 

However, the primary challenge with adversarial training is that it does not ensure that a specific 

input image will be mapped to a specific desired output image [17]. Rather, the adversarial loss 

functions are designed to only ensure that the generated images are statistically similar to the real 

images in the target domain [17]. This means the model learns to produce outputs that conform to the 

general characteristics of the target domain, but it does not guarantee a precise, one-to-one 

correspondence between each individual input and its intended output [17].  

To solve this challenge and preserve the key structures of the input image so that the generated 

image retains a close resemblance to the original input, CycleGAN introduces the concept of cycle 

consistency [17]. This means that translating an image from one domain to another and then back 

should return the original image, as shown in Figure 1(a) [17]. Mathematically, for mappings G:X→Y 

and F:Y→X, F(G(𝑥)) should approximate 𝑥, as shown in Figure 1(b), and G(F(𝑦)) should 

approximate 𝑦, shown in Figure 1(c) [17]. 

Researchers from the original CycleGAN paper introduced a good analogy to explain the concept of 

cycle consistency in CycleGAN [17]. They described the model as training two "autoencoders" 

simultaneously [3, 17]. An autoencoder is a type of neural network that learns to compress data into a 

lower-dimensional representation and then reconstruct it [3]. In CycleGAN, instead of simply 

compressing and reconstructing an image, the networks translate it into another domain and then back 

again [17]. The key idea is that after this round-trip translation, the resulting output should closely 

match the original image. 
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Therefore, combining cycle consistency loss and adversarial loss helps produce realistic translations, 

preventing the model from making arbitrary changes that don't preserve the content of the original 

images [17]. This approach allows CycleGAN to learn meaningful translations between domains 

without requiring paired examples, making it a powerful tool for various image-to-image translation 

tasks [17]. 

2.4 PatchGAN 

PatchGAN is a variant of Generative Adversarial Networks (GANs) that introduces a local 

discriminator for improving image generation quality [8]. Unlike traditional GANs, which use a 

global discriminator to assess the entire image [4], PatchGAN employs a discriminator that evaluates 

individual patches of the image to determine whether each patch is real or fake [8, 17]. This approach 

is beneficial because PatchGAN generally has fewer parameters, operates more quickly, and can be 

applied to images of any size [8, 17]. Additionally, PatchGAN’s focus on local texture and detail 

enables finer classification of images, effectively serving as a measure of texture or style loss [8, 17] 

2.5 Residual Networks (ResNets)  

ResNets were introduced to address the challenges of training very deep neural networks. ResNets 

employ residual blocks that include shortcut connections, which bypass one or more layers in the 

network [6]. This architecture enables the training of much deeper networks by mitigating the 

vanishing gradient problem and facilitating the learning of residual mappings [6]. In the context of 

CycleGAN, ResNet's residual blocks are utilized in the generator networks to enhance image 

translation quality and ensure stable training [17]. The incorporation of ResNets allows CycleGAN to 

generate more coherent and visually appealing images by leveraging the residual learning framework 

to preserve detailed information throughout the network [17]. 

 

3. Approach 

3.1 Dataset 

The iPhone2DSLR_flower dataset contains images of flowers captured with iPhones, where the 

backgrounds are in focus, as well as DSLR images with a shallow depth of field, higher resolution, 

and more stylized color grading. For this study, the dataset was downloaded from the CycleGAN 

dataset collection provided by the Berkeley Artificial Intelligence Research Laboratory at the 

University of California [2]. Most images featuring sceneries, human portraits, and other subjects 

unrelated to flowers were manually removed for data consistency. 

A random sample of 500 images from iPhones and DSLRs each was selected for training, and 200 

images from iPhones and DSLRs each for testing. This subset was used to train and evaluate the 

CycleGAN model. The reduction in dataset size was necessary due to limited computational resources 

as this study was conducted on a laptop [14]. Although this approach helped manage computational 

constraints, it resulted in a reduction in data diversity and overall training data. 

3.2 Model 

The CycleGAN model, built using TensorFlow and Keras in Python, for this study was adapted from 

the official Keras documentation [10], where it was originally built to translate images of horses into 

zebras using the horse2zebra dataset [2]. In this study, the code was modified to work with the 

iPhone2DSLR_flower dataset, and additional evaluations, including training curves and image 

reconstruction were incorporated.  

The CycleGAN model uses two ResNet generators and two PatchGan discriminators.  

The ResNet generators used consists of an initial convolutional layer with 64 filters and a large 

kernel size of 7×7, followed by reflection padding to manage border artifacts [5, 6]. This is followed 

by two downsampling blocks, where the number of filters doubles after each block, progressively 

capturing more complex features [6]. They are used to reduce the spatial dimensions and increase the 

filter count. In the core of the generator, nine residual blocks are used to capture intricate image 
details and preserve important features through residual connections [6]. Each residual block consists 

of convolutional layers with ReLU activations, which help in learning residual mappings effectively. 

The network then includes two upsampling blocks to restore the image's spatial dimensions and 
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reduce the number of filters [6]. The final output is generated through a convolutional layer with 3 

filters, corresponding to the RGB colour channels, followed by a hyperbolic tangent activation 

function to produce the output image in the normalized target domain [6, 17]. There are two ResNet 

generators in total: generator G transforms images from domain X (iPhone photographs) to domain Y 

(DSLR photographs), while generator F transforms images from domain Y back to domain X [4]. 

The PatchGAN discriminators in CycleGAN uses a convolutional architecture to classify image 

patches as real or fake. In this case, each discriminator starts with 64 filters and a 4×4 kernel, applying 

strides of 2 to downsample and capture basic features [8]. The model includes three downsampling 

blocks, where filters double each time, with strides of 2 for the first two blocks and 1 for the final 

block to capture finer details. It ends with a single filter convolutional layer, producing a one-channel 

output indicating the real or fake probability of each patch [4]. There are two PatchGAN 

discriminators in total: discriminator X is used to distinguish between real images from domain X and 

fake images generated by generator F, while discriminator Y is used to distinguish between real 

images from domain Y and fake images generated by generator G [4]. 

 

3.3 Training 

The generators and discriminators were trained using Adam optimizers [11] with the same learning 

rate of 2e-4 and a beta 1 value of 0.5. The CycleGAN model was then trained with the dataset for 50 

epochs using an NVIDIA GeForce RTX 3060 Laptop GPU [14]. The training process averaged 

approximately 350 seconds per epoch, resulting in a total training duration of around 5 hours. 

 

Figure 2: Generator and discriminator losses of the CycleGAN over 50 epochs of training. Both the 

generator losses for G and F show an overall decreasing trend, though with significant fluctuations. 

The loss for generator G exhibited more fluctuations but showed a higher overall decrease, reaching 

an approximated final loss of 3 at epoch 50. This decline suggests improvements in the generator's 

performance in producing realistic translations during training [17]. However, it had not yet stabilized 

or converged, indicating the need for further training and potential improvement in performance. The 

discriminator losses for both X and Y domains are similar and exhibited fluctuations between 0.40 

and 0.05, centering around 0.20. Extending training beyond 50 epochs could potentially lead to 

further loss reduction and convergence [9]. Additionally, fine-tuning hyperparameters, particularly the 

learning rate, may help mitigate fluctuations and improve convergence [9]. 
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3.4 Results 

 

Figure 3: input and generated images by CycleGAN during the first epoch. 

 

Figure 4: input and generated images by CycleGAN during the 10th epoch. 

 

Figure 5: input and generated images by CycleGAN during the 50th epoch. 

Figures 3, 4, and 5 illustrate the progression of the CycleGAN model from Epoch 1 to Epoch 50. In 

Epoch 1, shown in Figure 3, the generated images largely retain the structural features of the input 

images, preserving the overall shapes and structures of the flowers. However, the colors are 

inaccurately rendered, with flowers appearing gray and backgrounds dark green. This suggests that 

while the model has begun to differentiate between flowers and background elements, it has not yet 

learned to preserve color fidelity, resulting in an almost grayscale output. 

By Epoch 10, the model starts to restore some of the original colors, although inconsistencies 

remain. For instance, as seen in Figure 4, the third image from the left shows the flower being 

translated from purple to yellow, and the last image from the left depicts the color of the flower 

changing from pink to yellow. Additionally, the perceived resolution of the generated images is lower, 

with noticeable color noise which was not present in the original images. 

By Epoch 50, the model demonstrates significant improvements. It accurately reproduces the colors 

of the flowers and incorporates color grading similar to that seen in the DSLR photographs. For 

example, the first and second images from the right in Figure 5 show a blurred background with a 

focused foreground, effectively differentiating between flowers and the background. Despite these 

improvements, some generated images remain noisy compared to the originals and contain 

“hallucinations”. For example, the fourth image from the left contains a yellow artifact in one of the 

flower’s petals, which is absent in the original image. 



 

Figure 6: An iPhone image from the 'testA' dataset was fed into generator G to produce a translated 

DSLR image. This generated DSLR image was then passed through generator F to reconstruct it back 

to the original iPhone image. 

 

Figure 7: An iPhone image from the 'testA' dataset was fed into generator G to produce a translated 

DSLR image. This generated DSLR image was then passed through generator F to reconstruct it back 

to the original iPhone image. Time taken for translation to DLSR was 0.09126 seconds. 

Using the CycleGAN model with the final weights from Epoch 50, image reconstruction was 

conducted to demonstrate the outputs of generators G and F, which are crucial for cycle consistency 

[17]. Initially, an iPhone image is input into generator G to produce a DSLR-styled image. This 

generated DSLR image is then processed by generator F to reconstruct the original iPhone image. 

Figures 6 and 7 show that iPhone images, characterized by a deep depth of field and in-focus 
backgrounds, are transformed by generator G into DSLR-styled images with a shallow depth of field 

with bokeh effects. The generated DSLR images exhibit lower overall exposure and are generally 

darker compared to the originals, as shown in Figure 6, where the sky in the generated image is less 

overexposed. Artifacts are present, particularly in Figure 6, where the flower details become 

indistinct, indicating that the generator struggled to preserve finer details during translation. 

The reconstructed iPhone images, shown in the right-most images in Figures 6 and 7, reveal that 

generator F successfully restores the background focus and wider depth of field, found in the original 

iPhone images. Additionally, the saturation and overall brightness of the image is increased. These 

results suggest that generator F effectively translates the output from generator G to closely resemble 

the original iPhone images. 

 

 

Figure 8: iPhone input image and corresponding generated image from CycleGAN with a person as 

the main subject instead of flowers 
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4. Discussion 

One drawback of using CycleGAN for enhancing image quality from smartphone cameras is the 

need for diverse training data. As shown in Figure 8, the iPhone2DSLR_flower dataset primarily 

consists of images where flowers are the main subject. Consequently, when inputting an image with a 

person, the results may be suboptimal, as the CycleGAN model may struggle to accurately translate 

the features of a person. 

Further improvements could include increasing the number of training epochs, tuning 

hyperparameters such as the learning rates, and increasing the number of images in the dataset [9]. 

Increasing the number of training epochs allows the model to learn more detailed features and 

improve its translation. Tuning hyperparameters can help optimize the performance and smoothen the 

training convergence of both the generators and discriminators, leading to better image translation 

results [9]. Expanding the dataset to include a wider variety of image types and conditions can help 

the model learn more comprehensive features and improve its performance on previously 

underrepresented subjects. However, these improvements would result in increased time and 

computational resource requirements, as they require longer training periods to achieve the desired 

results, which is feasible if more powerful GPUs are used. Additionally, advancements have been 

made since the introduction of CycleGAN, such as Augmented CycleGAN, which learns many-to-

many mappings rather than a deterministic one-to-one mapping [1]. 

In terms of translation speed, the CycleGAN model demonstrated the capability to translate the 

iPhone image in Figure 7 in approximately 0.09 seconds. Given that the input image was compressed 

to only 256 x 256 pixels, it is substantially lower in resolution compared to standard smartphone 

images, which typically range from 8 MP (3456 x 2304 pixels) to 12 MP (4032 x 3024 pixels). Thus, 

it is likely that image translation using CycleGAN could require significantly more time for 

smartphone photographs in original resolutions, due to the increase in computational load on the 

model. 

By utilizing a larger and more diverse dataset, including various subject types such as portraits and 

landscapes, and images captured by specific camera models, it is possible to develop sophisticated 

image processing techniques using CycleGAN. Integrating CycleGANs directly into smartphone 

camera applications would allow users to conveniently apply different stylistic transformations to any 

image, emulating the characteristics of specific DSLR models or film cameras. Furthermore, 

CycleGAN extends beyond image enhancement. It can also transform photographs into paintings in 
the style of renowned artists like Van Gogh, or modify the environment depicted in the images, such 

as changing the scene from summer to winter [17]. This suggests that there are endless possibilities 

for increasing the capabilities and enhancing the creativity of computational photography through 

unpaired image-to-image translation. 

 

5. Conclusion 

This study provided a comprehensive overview of CycleGAN, explaining its underlying concepts 

and architecture. The development and evaluation of a CycleGAN model showcased its ability to 

effectively transform iPhone images into DSLR-styled outputs, despite limitations in computational 

resources and training data. The insights gained highlight both the strengths and limitations of the 

model, suggesting avenues for future research. Potential improvements include extending training 

duration, refining hyperparameters, and expanding the dataset to enhance performance and 

applicability. Overall, this research demonstrated that CycleGAN can be used for image enhancement 

and highlights the many possibilities for integrating CycleGANs into applications such as smartphone 

cameras. 
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